
A n o t h e r d e f e n c e o f e n u m e r a t e d t y p e s

M a r k k u Sakkinen t
D e p a r t m e n t of Computer Science and Information Systems

Univers i ty of Jyv~skyl~i
PL 35, SF-40351 Jyviiskyl~i, Finland

Internet : sakkinen@jytko.jyu.fi Bitnet/EARN: SAKKINEN@FINJYU

A b s t r a c t

I claim tha t enumera t ions , while of course not
strictly necessary, a re an e legant and useful facility in
modern p rogramming languages. I t ry to show tha t
a rguments recently given aga ins t them are weak a t
best and bogus a t worst, for general-purpose program-
ming. Some re la ted issues on types in p rogramming
languages are touched as well. These m a k e it even
more questionable whe the r Oberon m a r k s progress or
regress in language design.

1. I n t r o d u c t i o n

The debate on enumera t ions in the Feb rua ry
1991 issue between M a r k C a s h m a n [7] and Charles
Lins [8] was interest ing. I t prompted me to look up
Lins' original article [6], which I had not read before.
Lins' response to Cashman ' s article seems (na tura l ly
enough) to be wri t ten in a haste , and thus it suffers
from more inaccuracies i tself than Lins charges Cash-
m a n with - - I hope this comment of mine is not worse
still. Most important ly , as the title a l ready tells,
Cashman ' s paper is a defence of enumera t ions in gen-
eral, not only agains t those a rgumen t s espoused by
Lins.

An early commenta to r on Oberon [4] flatly
stated:

I fully agree with the elimination of these superfluous
and error-sensitive facilities [...]

(p. 23), meaning all Modula-2 features e l iminated f rom
Oberon except for a couple of van Delft 's own favour-
ites. However, the article gave no a rgumen t s on why
he (she?) considered a n y of these fea tures (including
opaque types) "superfluous and error-sensitive".

Let me begin wi th personal reminiscences, so you
see on wha t side m y hea r t is. Some ten years ago,
when I was doing "real work" (cf. current affiliation),
the possibility to switch f rom For t ran to Pascal felt
wonderful. One of the mos t impor tan t advan tages were
enumerat ions, which allowed me to wri te much clearer
and more self-documenting code. Very probably the
first en thus iasm led me even to overuse them.

When I cursorily read about Oberon [1,2], m y
general reaction was: now Wir th tries to banish, as far
as possible, every fea ture tha t is known to be misused
by some programmers . To me it seemed like tak ing

away all sha rp knives from a surgeon so tha t (s)he may
not hur t her/his fingers. Still, i f enumera t ions were
Wirth's own original invention (I a m not an expert in
the history of p rogramming languages), i t is quite
r emarkab le tha t he has had the hear t to abandon them.

Cashman in turn wri tes as his final conclusion:

Oberon has some features of interest, but it does not
seem to be a major advance over Modula-2. Indeed, in
s o m e areas of type-safety, it seems to be a step
backward.

While largely agreeing, I suspect tha t Cashman had not
studied Oberon except from [6], so it might liave been
wise to qualify his judgement more clearly. In one
place, he complains about the Modula-2 principles of
part ial impor t ([7], p. 36) and suggests tliat explicit
qualifiers should always be used with imported names.
Oberon in fact requires this explicit qualification.

Two predecessors of Oberon from the drawing
board of Niklaus Wirth, Pascal and Modula-2, have
become very popular. I t is interest ing to compare
Oberon with Modula-3 [5], ano ther descendant of
Modula-2, which has been developed with Wirth's bless-
ing and advice. In contrast to Oberon, Modula-3 has
retained enumera t ion types; i t is even in general Iess
Spa r t an than Oberon.

In the following section, I t ry to argue about
enumera t ions and some related issues from a some-
what philosophic point of view. In the remaining sec-
tions, we will look again a t the ma in points t reated by
Lins and Cashman. We m a y skip Wirth 's a rgument
about verbosity [1]; Lins indeed did not support i t in
[6], a l though Cashman claims so.

I am not an expert in Modula-2, Modula-3 nor
Oberon, and the available l i te ra ture does not always
seem to give unambiguous answers to all questions.
Therefore some technical detai ls in the sequel m a y not
be completely accurate (v. Acknowledgements), but tha t
should not dis tract from the principles.

2. W h y h a v e s o m a n y t y p e s ?

The original purpose of Oberon [1] clearly was to
be a compact and elegant language for building com-
pact and e legant operat ing sys tems and the like. The
design choices made in the language may be very
appropr ia te for this purpose. However, a t least Lins [6]

Work'supported by the Academy of Finland, Project 1061120 (Object-oriented languages and techniques).

37 ACM SIGPLAN Notices, Volume 26, No. 8, August 1991

seems to advocate Oberon for general-purpose program-
ming, where the tradeoffs can be quite different.

From some viewpoint, every distinct da ta type
tha t appears in a piece of software is a liability; for
instance because it m a y m a k e reasoning about the
software more complicated. From a modelling
viewpoint [3], however, i t is desirable for types and
entities in the software to correspond as closely as pos-
sible to things perceived in the real world. This
viewpoint is impor tan t in large applications, especially
when their specifications a re f , ~ y and change rapidly.

Subrange types a re ano ther tradit ional fea ture
tha t has been e l iminated f rom Oberon (but re ta ined in
Modula-3). I do not m o u r n for them so much:
subranges have weaker advan tages and create g rea te r
problems than enumera t ions . Especially, there is often
need for ar i thmet ic and conversions between ins tances
of different subranges of the same base type.

For the modell ing power and convenience of the
languages, i t is a re t rograde s tep in Modula-3 tha t type
equivalence is defined as s t ructura l equivalence 1, while
Modula-2 applies "name equivalence" (the mos t com-
mon al though mis leading term; something like
'declaration identi ty ' migh t be better). The possibility
to m a k e s imilar types dist inct prevents p rog rammers
from accidentally adding apples to oranges.

The principle of s t ruc tura l type equivalence
would be worse in Oberon than in Modula-3. because it
has also abandoned opaque types. Some detai ls in [2]
(especially the definition of procedure types) would
imply tha t s t ruc tura l equivalence was meant , some oth-
ers (especially the principle of record type extension)
again hint to the converse. I t is surpr is ing t ha t Wir th
has again eschewed this impor t an t issue2: i t caused a
lot of problems and debate wi th Pascal in the 70%. At
least current Oberon implementa t ions seem to apply
name equivalence (v. Acknowledgements).

E n u m e r a t e d types are one fea ture t ha t helps pro-
g r ammers to keep unre la ted enti t ies clearly separa ted .
The advan tages of well-chosen enumera t ions real ly
become appa ren t only when there a re several of them
in the same programme; tha t could not be demon-
s t rafed in a shor t article like [7]. One m u s t bea r in
mind tha t the uti l i ty of m a n y a language fea ture looks
very different in toy examples on one hand and life-size
software on the o ther hand.

E n u m e t ~ i o n s have some similar i ty in principle
with the classes of object-oriented p rogramming ('object
types ' in Modula-3). Both allow p rog rammers to define

I The attribute 'branded' allows name equivalence to be
defined, but only for reference types.

2 A revised version of the report, dated 1 October 1990 and
available by anonymous FTP from ETH (EidgenSssische
Technische Hochschule = Swiss Federal Institute of
Technology, Zurich) gives no more information on this point.

types and enti t ies tha t correspond much more closely to
problem-domain concepts than do the built-in types,
which are more re la ted to the facilities of computer
hardware . With classes, the p rog rammer can define
new complex types with a rb i t r a ry semantics; with
enumerat ions , new primitive types with very restricted
semantics.

3 . E n u m e r a t i o n s v s . c l a s s e s

Lins ([6], p. 21 - 22) essential ly seems to mean
tha t in object-oriented languages, classes make
enumera t ions r edundan t or obsolete. I beg to differ
from this opinion, referr ing to the previous section.

A class (or a Modula-2 opaque type or an Ada
private type) differs from conventional record or struc-
ture types in tha t the operat ions tha t can be applied to
its instances a re restr ic ted to wha t the class designer
has considered semant ica l ly meaningful . Clients can-
not a rb i t rar i ly inspect or modify the instance variables
of an object. Similarly, enumera t ions differ from
integers in tha t a r i thmet ic operations, which would
have no sensible mean ing when applied to a
classification, are prohibited.

Certainly, the semant ics of enumera t ions in
Modula-2 and other cur rent languages do not fit all
desirable purposes exactly (al though bet ter than
integers). For instance, there a re classifications with
no inherent order be tween the i tems, e.g. the channel
errors in [6, 7]. There are also cases in which the
na tura l order is cyclic, e.g. the days of the week. I could
somehow imagine a language facility of "enumerat ion
classes" for the exact tai loring of operat ions and their
semantics, bu t its advan tages would probably not be
worth the added complexity.

A general facility for the definition of (possibly
many-sor ted) a lgebras of a tomic values would subsume
enumerat ions , of course. Ada actual ly seems to have
sufficient fea tures for this; thus enumera t ions seem
genuinely r edundan t (but convenient) in Ada, but not
so in any of the three languages t ha t we are pr imari ly
discussing.

Although I a m a proponent of object-oriented pro-
g r amming myself, I agree with Cashman tha t in the
presentat ion of [6], classes do not ye t introduce any-
thing essential into the weekday example tha t goes
beyond the ordinary facilities of Modula-2, in spite of
the grea t length of Appendix C. In fact, m a n y object-
oriented languages (obviously not Object Oberon) are
decisively weaker than Modula-2 and Ada in the
respect tha t they lack modules or packages: the only
available uni t of modular isa t ion is a single class.

Some of the a rgumen t s given on p. 21 - 22 of [6]
aga ins t the declarat ion of the days of the week as an
enumerat ion, frankly, look ludicrous to .me. For
instance the facts t ha t the week has 7 days and Tues-
day follows Monday exist in the problem domain,
instead of being "hidden information and dependencies"

38

created by the programmer.

4. Language-specif ic flaws o f M o d u l a - 2

There are some deficiencies in the t rea tment of
enumeration types in Modula-2; these become very evi-
dent in comparison to Ada, which has done the things
right. I f Wirth's goal with Oberon had not been an
almost minimal language, he might have corrected
these flaws instead of omitting enumerat ions alto-
gether.

First of all, an enumerat ion cannot be exported
opaquely. This restriction cannot be defended even on
the grounds of implementation difficulties, since
subranges of s tandard types can be opaquely exported.
I would suggest it to be lifted, more strongly than Cash-
man on p. 36 of [7]. - - Ada allows any type to be
declared private in a package specification, which is
already more demanding on implementors. In Modula-
3, only reference types may be declared opaque ([5], p.
31).

One of the arguments of Wirth ([1], p. 663) tha t
Lins cites is the following, closely related to opacity:

... the exceptional rule that the import of a type
identifier also causes the (automatic) import of all
associated constant identifiers.

Why not add an option to the IMPORT declaration so
that the import of enumerat ion constants can be
prevented or made selective? - - This possibility does
not exist in Ada either. Almost the same effect can be
achieved by using a private type together with the fol-
lowing feature.

Named constants in Modula-2 and Oberon can be
of standard types only: an obvious unorthogonali ty
between constants and variables. In Ada and Modula-3
named constants of user-defined types can be declared.
Furthermore, such a declaration in the specification
part of an Ada package need not contain the value of
the constant. Therefore, one can get the effect of a
selective export of enumerat ion constants in Ada by
making the type itself private and declaring the desired
named constants.

The "name space pollution" and name conflicts
that can be caused when a large number of enumera-
tious are visible within the same scope can be con-
trolled with proper language mechanisms. In Ada,
enumeration constants can be qualified by the type
name if they would be ambiguous otherwise, e.g.

Weekday'(Snnday)

It would seem ([5], p. 3 - 4) tha t Modula-3 always
requires such qualification:

Weekday.Sunday

The inability to have an a r ray or record as the
result type of a function procedure was one of those
complaints in [7] (p. 38) not directly connected with the
main theme. Although defendable on a cost-benefit
basis, it is an ugly unorthogonality in Modula-2 and

Oberon; it seems to be corrected in Modula-3. Since
'set ' is a basic type in Oberon (§7), it is allowed as the
re turn type of a function; in Modula-2 set types are con-
structed types and suffer from the same restriction as
ar ray and record types.

5. E n n m e r a t i o n s vs . n n m e r i c c o n -
s t a n t s

In the first example, on channel error codes,
Cashman's first solution with enumerations would
become in almost all respects superior to Lius' solution
with named integer constants, if only we could make
ChannelErrorTYPE opaque (§4). (Thus, it would be
possible in Ada.) I will not repeat the arguments given
in [7], p. 35 - 36. I t could be useful to add a procedure
like

PROCEDURE ChannelError
(Code: ChannelErrorTYPE): BOOLEAN;

An additional benefit of this approach will be seen in
§7.

Lius writes in [8] about Cashman's second solu-
tion:

... he explicitly avoids the use of enumerations, instead
using an opaque type. Here he has given an excellent
example of how not using enumerations yields a more
elegant, and possibly extensible, solution.

Lins has perhaps misunderstood Cashman's purpose:
the enumerat ion has not been omitted, but only moved
from the definition to the implementation, to achieve
information hiding. This possibility had been admitted
in [6], p. 20. However, even I really cannot see much
use for the enumerat ion in this example.

Enumerat ions automatically avoid the "apples to
oranges" problem mentioned in §2. With integers,
nothing warns us about assigning Wednesday to a vari-
able tha t was supposed to contain a channel error code.
In Modula-2, if we wanted to avoid enumerations, we
could make variables representing error codes and days
of the week mutual ly incompatible by defining

TYPE ChannelErrorTYPE = INTEGER;
DayTYPE = INTEGER;

This would evidently work as intended also in Oberon
(at least in the ETH implementation), but not in
Modula-3 because of its principle of structural type
equivalence. Unfortunately, in Modula-2 and Oberon
there is no way to declare a named constant to be of
type ChannelErrorTYPE or DayTYPE (§4).

Incidentally, Cashman's second example also
suffers from the just-mentioned deficiency of Modula-2,
He declares:

VAR HandleNIL: HandleTYPE;
PROCEDURE Open

(ChannelName: ARRAY OF CHAR;
VAR ErrorString: ARRAY OF CHAR):

HandleTYPE
(* Returns HandleNIL on fatal error *);

39

It was not possible to declare HandleNIL as a constant,
which it logically should be. Now clients can modify
HandleNIL inadvertently. Since the only purpose of
exporting HandleNIL is to compare HandleTYPE
return codes to it, I would ra ther replace it with a pro-
cedure, as at the beginning of this section:

PROCEDURE ChannelError
(Handle: HandleTYPE): BOOLEAN;

The argument tha t the integer solution is more
easily extonsible, without needing recompilations, is
double-edged at best. Namely, there is not much sense
in adding a new code unless it is taken into account in
all procedures tha t treat error codes. This might be
more easily forgotton with integers than with an
enumeration.

The rocompilation work caused by modified
enumerat ion definitions should not be overemphasised.
Compare this to the C++ language: almost any
modification in a class, even its private part, requires
all subclasses and all client files of tha t class to be
recompiled. Nevertheless C++ seems to be very popu-
lar.

6. E n u m e r a t i o n s a s a r r a y i n d i c e s

In Oberon, each dimension of an a r ray is
declared by giving the length as a constant expression.
Lins says in [6], p. 21, tha t enumerations as index types
(dimensions) would not fit nicely into this model. That
is true but irrelevant. The Oberon convention is no
bettor than using index types (as in Pascal) or bound
pairs (as in so many languages since Algol 60), both of
which are suitable for enumerations.

Going back to memories (§1), I would say tha t
the index types of ar rays in the industrial automation
software wri t ten by my team were mostly enumera-
tions. I would also guess tha t most 'case' s tatoments
were baaed on enumerations.

7. S e t s o f e n u m e r a t i o n s

Lins writes in [6], p. 21:

... being able to hide the individual enumeration
constants while making the set type visible to clients
is not possible in [Pascal or Modula-2].

In Ada, even a set type can be privato (§4); if it is not
declared limited private, clients can assign and com-
pare set values. On rare occasions, I admit, there
might be some advantage in having a set type visible
without knowing anything about its base type, so tha t
one can apply s tandard set operations.

We should note tha t the error code example
presented by Lins is very peculiar, although not uncom-
mon. In the first case of a single re turn code, the
alleged advantage of the integer representat ion
depends totally on the circumstance that there is only
one code that signifies success, and its representation is
known (to be 0). In the second case where a set of codes

is returned, the advantage similarly depends on the
fact tha t all status codes in the set signify errors, and
thus the empty set has a special meaning.

If the situation is even a bit more general, we
will need two parallel re turn values if we do not want
to reveal everything to clients: one that tolls whether
the operation succeeded or failed, and another (opaque)
tha t contains the details. - - Alternatively, as in the
suggestions of §5, we may simply keep the re turn code
type opaque and provide a Boolean procedure to toll
about success or failure. We already get a clear advan-
tage over the solution with integer constants: if we
decide to switch from a single code to a set or vice
versa, client code need not be modified.

Lins regards it as an advantage of Oberon that it
has only one general set type, as opposed to distinct set
types for each base type. In my opinion, this again
reduces the modelling power of the language. However,
it is a ra ther necessary consequence from the fact that
both enumerat ions and subranges have been omitted
from the language m there would not be many poten-
tial base types anyway.

8. O u t p u t a n d i n p u t o f e n , l m e r a t i o n s

Lins writes on p. 21 of [6]:

Conceivably, one might desire a textual representation
of a day of the week for display to the user.

He then goes on to explain why he thinks this to be
difficult with enumerat ions (I was not convinced).
However, when Cashman suggests on p. 38 of [7]:

There should be a string which is the identifier in
string form, associated with each enumeration
element. An intrinsic function could make the string
available as needed.

Lins retorts in [8]:

While perhaps of marginal use to a programmer,
exposing a programming identifier to an end-user as
part of an error message is clearly undesirable.

In m a n y cases (§2), an enumerat ion exactly
models a problem-domain classification, and the
identifiers can be chosen so that even an end user can
relate to them. The days of the week are a prime exam-
ple. Certainly there are m a n y situations in which out-
putt ing an enumerat ion identifier could only confuse
the user; but likewise most numeric variables in a pro-
gramme are such tha t there would be no use to print
out their values, and still nobody wants to prohibit the
output of integers in general.

Multilingual environments create additional
problems, but those are not insurmountable. It would
be possible to chock a t compile or link time that strings
corresponding to all enumerat ion constants have been
defined for all altornative user languages to be sup-
ported. Indeed such checking would appear much
easier implementable for enumerat ions than other
approaches.

40

There a re needs for the input of enumera t ions as
well, a l though probably less often than output. Since
the input is far less tr ivial to program by hand in a
robust way than the output, i t could be even more
beneficial to have as a built-in feature. I th ink some
Pascal implementa t ions a l ready have facilities for the
input and output of enumerat ions .

9 . C o n c l u s i o n

I t is t rue t ha t omit t ing enumera t ions from a pro-
g ramming language makes the compiler wri ter 's job
easier. Therefore i t m a y indirectly profit even program-
mers, because the compilers m a y be smaller, faster, and
less bug-ridden. However, I suppose enumera t ions a re
not a par t icular ly difficult fea ture to implement . Leav-
ing out in teger types would bring far grea ter savings;
af ter all, everything can be done with jus t floating-point
numbers.

Lins (and Wirth) have tr ied to convince us tha t
dispensing with enumera t ions is a direct advan tage
also to the users (programmers) of a language. They
should be f irs t-rate experts; Lins has published books
about software components in Modula-2. However,
m a n y of thei r a rgumen t s turned out to be evidence of
flaws in Modula-2, not in the general idea of
enumera ted types. Although bashing Ada seems to be
fashionable, l anguage designers might sometimes do
well to look for well- thought ideas and features in Ada.

Until much s t ronger a rguments than we have
seen so far are presented, I agree wi th Cashman: one
can do without enumera t ions , bu t a t the expense of
more work and less understandable , less main ta inab le
code. One aspect tha t C as hm an did not take up expli-
citly but t ha t I wan t to s t ress is tha t judicious use of
enumerat ions is an aid in the modelling of the applica-
tion domain.

A c k n o w l e d g e m e n t s

When I had submit ted the previous version of
this article and sent copies to some acquaintances, Kai
Keskimies told me tha t a t leas t the E T H implementa-
tion of Oberon is based on "name equivalence" between
types. When I asked on Usenet about type equivalence
and the restr ict ions on function re tu rn types, Thomas
R6mke and Andreas Borchert pointed out tha t I had
missed the restr ict ion (§4) t ha t was clearly wri t ten in
§10.1 of [2]. Marc-Michael Brandis then confirmed (in
the 'comp.lang.modula2' group):

Oberon uses name equivalence as does Modula-2.
There are two special cases in which structural
equivalence is used: Open arrays and procedure
variables.

I would also like to t hank the editor for his pati-
ence with revisions. The first version of this paper was
a l ready patched once with rep lacement pages because
of some erroneous reference numbers .

R e f e r e n c e s

These a re in chronologic order. Since there are
any number of books on both Modula-2 and Ada, refer-
ences to them would be superfluous.

[1] Niklaus Wirth. "From Modula to Oberon".
Software - - Practice and Experience, 18:7 (July
1988), 661 - 670.

[2] Niklaus Wirth. "The P rog ramming Language
Oberon". Software - - Practice and Experience,
18:7 (July 1988), 671 - 690.

[3] Ole L e h r m a n n Madsen, Birger M¢ller-Pedersen.
"What object-oriented p rogramming m a y be - and
wha t it does not have to be". In: S. Gjessing, K.
N y g a a r d (Eds.). ECOOP "88 European Conference
on Object-Oriented Programming, 1 - 20.
Springer-Verlag 1988.

[4] A.J.E. van Delft. "Comments on Oberon". A C M
SIGPLANNotices , 24:3 (March 1989), 23 - 30.

[5] Luca Cardelli, J a m e s Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson. Modula-3
Report (revised). Digital Sys tems Research Center
and Olivetti Research Center, 1989.

[6] C. Lins. "Programming Without Enumera t ions in
Oberon". A C M S I G P L A N Notices, 25:7 (July
1990), 19 - 27.

[7] M a r k Cashman. "The Benefits Of Enumera ted
Types in Modula-2". A C M SIGPLANNotices , 26:2
(February 1991), 35 - 39.

[8] C. Lins. Author 's Response to [7]. A C M SIG-
P L A N Notices, 26:2 (Februa ry 1991), 40.

41

