Another defence of enumerated types

Markku Sakkinen
Department of Computer Science and Information Systems
University of Jyviaskyld
PL 35, SF-40351 Jyviiskyld, Finland
Internet: sakkinen@jytko.jyu.fi Bitnet/EARN: SAKKINEN@FINJYU

Abstract

I claim that enumerations, while of course not
strictly necessary, are an elegant and useful facility in
modern programming languages. I try to show that
arguments recently given against them are weak at
best and bogus at worst, for general-purpose program-
ming. Some related issues on types in programming
languages are touched as well. These make it even
more questionable whether Oberon marks progress or
regress in language design.

1. Introduction

The debate on enumerations in the February
1991 issue between Mark Cashman [7] and Charles
Lins [8] was interesting. It prompted me to look up
Ling’ original article [6], which I had not read before.
Lins’ response to Cashman’s article seems (naturally
enough) to be written in a haste, and thus it suffers
from more inaccuracies itself than Lins charges Cash-
man with — I hope this comment of mine is not worse
still. Most importantly, as the title already tells,
Cashman’s paper is a defence of enumerations in gen-
eral, not only against those arguments espoused by
Lins.

An early commentator on Oberon [4] flatly
stated:

I fully agree with the elimination of these superfluous
and error-sensitive facilities [...]

(p. 23), meaning all Modula-2 features eliminated from
Oberon except for a couple of van Delft’s own favour-
ites. However, the article gave no arguments on why
he (she?) considered any of these features (including
opaque types) “superfluous and error-sensitive”.

Let me begin with personal reminiscences, so you
see on what side my heart is. Some ten years ago,
when I was doing “real work” (cf. current affiliation),
the possibility to switch from Fortran to Pascal felt
wonderful. One of the most important advantages were
enumerations, which allowed me to write much clearer
and more self-documenting code. Very probably the
first enthusiasm led me even to overuse them.

When I cursorily read about Oberon [1,2], my
general reaction was: now Wirth tries to banish, as far
as possible, every feature that is known to be misused
by some programmers. To me it seemed like taking

away all sharp knives from a surgeon so that (s)he may
not hurt her/his fingers. Still, if enumerations were
Wirth’s own original invention (I am not an expert in
the history of programming languages), it is quite
remarkable that he has had the heart to abandon them.

Cashman in turn writes as his final conclusion:

Oberon has some features of interest, but it does not
seem to be a major advance over Modula-2. Indeed, in
some areas of type-safety, it seems to be a step
backward.

While largely agreeing, I suspect that Cashman had not
studied Oberon except from (6], so it might have been
wise to qualify his judgement more clearly. In one
place, he complains about the Modula-2 principles of
partial import ([7], p. 36) and suggests that explicit
qualifiers should always be used with imported names.
Oberon in fact requires this explicit qualification.

Two predecessors of Oberon from the drawing
board of Niklaus Wirth, Pascal and Modula-2, have
become very popular. It is interesting to compare
Oberon with Modula-3 [5], another descendant of
Modula-2, which has been developed with Wirth’s bless-
ing and advice. In contrast to Oberon, Modula-3 has
retained enumeration types; it is even in general less
Spartan than Oberon.

In the following section, I try to argue about
enumerations and some related issues from a some-
what philosophic point of view. In the remaining sec-
tions, we will look again at the main points treated by
Lins and Cashman. We may skip Wirth’s argument
about verbosity [1}; Lins indeed did not support it in
[6], although Cashman claims so.

I am not an expert in Modula-2, Modula-3 nor
Oberon, and the available literature does not always
seem to give unambiguous answers to all questions.
Therefore some technical details in the sequel may not
be completely accurate (v. Acknowledgements), but that
should not distract from the principles.

2. Why have so many types?

The original purpose of Oberon [1] clearly was to
be a compact and elegant language for building com-
pact and elegant operating systems and the like. The
design choices made in the language may be very
appropriate for this purpose. However, at least Lins [6]

T Work'supported by the Academy of Finland, Project 1061120 (Object-oriented languages and techniques).

37 ACM SIGPLAN Notices, Volume 26, No. 8, August 1991



seems to advocate Oberon for general-purpose program-
ming, where the tradeoffs can be quite different.

From some viewpoint, every distinct datatype
that appears in a piece of software is a liability; for
instance because it may make reasoning about the
software more complicated. From a modelling
viewpoint [3], however, it is desirable for types and
entities in the software to correspond as closely as pos-
sible to things perceived in the real world. This
viewpoint is important in large applications, especially
when their specifications are fuzzy and change rapidly.

Subrange types are another traditional feature
that has been eliminated from Oberon (but retained in
Modula-3). I do not mourn for them so much:
subranges have weaker advantages and create greater
problems than enumerations. Especially, there is often
need for arithmetic and conversions between instances
of different subranges of the same base type.

For the modelling power and convenience of the
languages, it is a retrograde step in Modula-3 that type
equivalence is defined as structural equivalence!, while
Modula-2 applies “name equivalence” (the most com-
mon although misleading term; something like
‘declaration identity’ might be better). The possibility
to make similar types distinct prevents programmers
from accidentally adding apples to oranges.

The principle of structural type equivalence
would be worse in Oberon than in Modula-3. because it
has also abandoned opaque types. Some details in [2]
(especially the definition of procedure types) would
imply that structural equivalence was meant, some oth-
ers (especially the principle of record type extension)
again hint to the converse. It is surprising that Wirth
has again eschewed this important issue’: it caused a
lot of problems and debate with Pascal in the 70’s. At
least current Oberon implementations seem to apply
name equivalence (v. Acknowledgements).

Enumerated types are one feature that helps pro-
grammers to keep unrelated entities clearly separated.
The advantages of well-chosen enumerations really
become apparent only when there are several of them
in the same programme; that could not be demon-
strated in a short article like [7]. One must bear in
mind that the utility of many a language feature looks
very different in toy examples on one hand and life-size
software on the other hand.

Enumer.tions have some similarity in principle
with the classes of object-oriented programming (‘object
types’ in Modula-3). Both allow programmers to define

! The attribute branded’ allows name equivalence to be
defined, but only for reference types.

2 A revised version of the report, dated 1 October 1990 and
available by anonymous FTP from ETH (Eidgenossische
Technische Hochschule Swiss Federal Institute of
Technology, Zurich) gives no more information on this point.

38

types and entities that correspond much more closely to
problem-domain concepts than do the built-in types,
which are more related to the facilities of computer
hardware. With classes, the programmer can define
new complex types with arbitrary semantics; with
enumerations, new primitive types with very restricted
semantics.

3. Enumerations vs. classes

Lins ([6], p. 21 —~ 22) essentially seems to mean
that in object-oriented languages, classes make
enumerations redundant or obsolete. I beg to differ
from this opinion, referring to the previous section.

A class (or a Modula-2 opaque type or an Ada
private type) differs from conventional record or struc-
ture types in that the operations that can be applied to
its instances are restricted to what the class designer
has considered semantically meaningful. Clients can-
not arbitrarily inspect or modify the instance variables
of an object. Similarly, enumerations differ from
integers in that arithmetic operations, which would
have no sensible meaning when applied to a
classification, are prohibited.

Certainly, the semantics of enumerations in
Modula-2 and other current languages do not fit all
desirable purposes exactly (although better than
integers). For instance, there are classifications with
no inherent order between the items, e.g. the channel
errors in [6, 7]. There are also cases in which the
natural order is cyclic, e.g. the days of the week. I could
somehow imagine a language facility of “enumeration
classes” for the exact tailoring of operations and their
semantics, but its advantages would probably not be
worth the added complexity.

A general facility for the definition of (possibly
many-sorted) algebras of atomic values would subsume
enumerations, of course. Ada actually seems to have
sufficient features for this; thus enumerations seem
genuinely redundant (but convenient) in Ada, but not
s0 in any of the three languages that we are primarily
discussing.

Although I am a proponent of object-oriented pro-
gramming myself, I agree with Cashman that in the
presentation of [6], classes do not yet introduce any-
thing essential into the weekday example that goes
beyond the ordinary facilities of Modula-2, in spite of
the great length of Appendix C. In fact, many object-
oriented languages (obviously not Object Oberon) are
decisively weaker than Modula-2 and Ada in the
respect that they lack modules or packages: the only
available unit of modularisation is a single class.

Some of the arguments given on p. 21 — 22 of [6]
against the declaration of the days of the week as an
enumeration, frankly, look ludicrous to .me. For
instance the facts that the week has 7 days and Tues-
day follows Monday exist in the problem domain,
instead of being “hidden information and dependencies”



created by the programmer.

4. Language-specific flaws of Modula-2

There are some deficiencies in the treatment of
enumeration types in Modula-2; these become very evi-
dent in comparison to Ada, which has done the things
right. If Wirth’s goal with Oberon had not been an
almost minimal language, he might have corrected
these flaws instead of omitting enumerations alto-
gether.

First of all, an enumeration cannot be exported
opaquely. This restriction cannot be defended even on
the grounds of implementation difficulties, since
subranges of standard types can be opaquely exported.
I would suggest it to be lifted, more strongly than Cash-
man on p. 36 of [7]. — Ada allows any type to be
declared private in a package specification, which is
already more demanding on implementors. In Modula-
3, only reference types may be declared opaque ((5], p.
31).

One of the arguments of Wirth ([1}, p. 663) that
Lins cites is the following, closely related to opacity:
... the exceptional rule that the import of a type

identifier also causes the (automatic) import of all
associated constant identifiers.

Why not add an option to the IMPORT declaration so
that the import of enumeration constants can be
prevented or made selective? — This possibility does
not exist in Ada either. Almost the same effect can be
achieved by using a private type together with the fol-
lowing feature.

Named constants in Modula-2 and Oberon can be
of standard types only: an obvious unorthogonality
between constants and variables. In Ada and Modula-3
named constants of user-defined types can be declared.
Furthermore, such a declaration in the specification
part of an Ada package need not contain the value of
the constant. Therefore, one can get the effect of a
selective export of enumeration constants in Ada by
making the type itself private and declaring the desired
named constants.

The “name space pollution” and name conflicts
that can be caused when a large number of enumera-
tions are visible within the same scope can be con-
trolled with proper language mechanisms. In Ada,
enumeration constants can be qualified by the type
name if they would be ambiguous otherwise, e.g.

Weekday'(Sunday)

It would seem ([5], p. 3 — 4) that Modula-3 always
requires such qualification:

Weekday.Sunday

The inability to have an array or record as the
result type of a function procedure was one of those
complaints in {7] (p. 38) not directly connected with the
main theme. Although defendable on a cost-benefit
basis, it is an ugly unorthogonality in Modula-2 and

Oberon; it seems to be corrected in Modula-3. Since
‘set’ is a basic type in Oberon (§7), it is allowed as the
return type of a function; in Modula-2 set types are con-
structed types and suffer from the same restriction as
array and record types.

5. Enumerations vs. numeric con-
stants

In the first example, on channel error codes,
Cashman’s first solution with enumerations would
become in almost all respects superior to Lins’ solution
with named integer constants, if only we could make
ChannelErrorTYPE opaque (§4). (Thus, it would be
possible in Ada.) I will not repeat the arguments given
in [7], p. 35 — 36. It could be useful to add a procedure
like

PROCEDURE ChannelError
(Code: ChannelErrorTYPE): BOOLEAN;

An additional benefit of this approach will be seen in
§7.

Lins writes in [8] about Cashman’s second solu-
tion:
... he explicitly avoids the use of enumerations, instead
using an opaque type. Here he has given an excellent

example of how not using enumerations yields a more
elegant, and possibly extensible, solution.

Lins has perhaps misunderstood Cashman’s purpose:
the enumeration has not been omitted, but only moved
from the definition to the implementation, to achieve
information hiding. This possibility had been admitted
in [6], p. 20. However, even I really cannot see much
use for the enumeration in this example.

Enumerations automatically avoid the “apples to
oranges” problem mentioned in §2. With integers,
nothing warns us about assigning Wednesday to a vari-
able that was supposed to contain a channel error code.
In Modula-2, if we wanted to avoid enumerations, we
could make variables representing error codes and days
of the week mutually incompatible by defining

TYPE ChannelErrorTYPE = INTEGER;

DayTYPE = INTEGER;

This would evidently work as intended also in Oberon
(at least in the ETH implementation), but not in
Modula-3 because of its principle of structural type
equivalence. Unfortunately, in Modula-2 and Oberon
there is no way to declare a named constant to be of
type ChannelErrorTYPE or DayTYPE (§4).

Incidentally, Cashman’s second example also
suffers from the just-mentioned deficiency of Modula-2,
He declares:

VAR HandleNIL: HandleTYPE;
PROCEDURE Open
(ChannelName: ARRAY OF CHAR;
VAR ErrorString: ARRAY OF CHAR):
HandleTYPE
(* Returns HandleNIL on fatal error *);

39



It was not possible to declare HandleNIL as a constant,
which it logically should be. Now clients can modify
HandleNIL inadvertently. Since the only purpose of
exporting HandleNIL is to compare HandleTYPE
return codes to it, I would rather replace it with a pro-
cedure, as at the beginning of this section:
PROCEDURE ChannelError
(Handle: HandleTYPE): BOOLEAN;

The argument that the integer solution is more
easily extensible, without needing recompilations, is
double-edged at best. Namely, there is not much sense
in adding a new code unless it is taken into account in
all procedures that treat error codes. This might be
more easily forgotten with integers than with an
enumeration.

The recompilation work caused by modified
enumeration definitions should not be overemphasised.
Compare this to the C++ language: almost any
modification in a class, even its private part, requires
all subclasses and all client files of that class to be
recompiled. Nevertheless C++ seems to be very popu-
lar.

6. Enumerations as array indices

In Oberon, each dimension of an array is
declared by giving the length as a constant expression.
Lins says in [6], p. 21, that enumerations as index types
(dimensions) would not fit nicely into this model. That
is true but irrelevant. The Oberon convention is no
better than using index types (as in Pascal) or bound
pairs (as in so many languages since Algol 60), both of
which are suitable for enumerations.

Going back to memories (§1), I would say that
the index types of arrays in the industrial automation
software written by my team were mostly enumera-
tions. I would also guess that most ‘case’ statements
were based on enumerations.

7. Sets of enumerations
Lins writes in [6], p. 21:

... being able to hide the individual enumeration
constants while making the set type visible to clients
is not possible in [Pascal or Modula-2].

In Ada, even a set type can be private (§4); if it is not
declared limited private, clients can assign and com-
pare set values. On rare occasions, I admit, there
might be some advantage in having a set type visible
without knowing anything about its base type, so that
one can apply standard set operations.

We should note that the error code example
presented by Lins is very peculiar, although not uncom-
mon. In the first case of a single return code, the
alleged advantage of the integer representation
depends totally on the circumstance that there is only
one code that signifies success, and its representation is
known (to be 0). In the second case where a set of codes

is returned, the advantage similarly depends on the
fact that all status codes in the set signify ervors, and
thus the empty set has a special meaning.

If the situation is even a bit more general, we
will need two parallel return values if we do not want
to reveal everything to clients: one that tells whether
the operation succeeded or failed, and another (opaque)
that contains the details. — Alternatively, as in the
suggestions of §5, we may simply keep the return code
type opaque and provide a Boolean procedure to tell
about success or failure. We already get a clear advan-
tage over the solution with integer constants: if we
decide to switch from a single code to a set or vice
versa, client code need not be modified.

Lins regards it as an advantage of Oberon that it
has only one general set type, as opposed to distinct set
types for each base type. In my opinion, this again
reduces the modelling power of the language. However,
it is a rather necessary consequence from the fact that
both enumerations and subranges have been omitted
from the language — there would not be many poten-
tial base types anyway.

8. Output and input of enumerations
Lins writes on p. 21 of [6]:

Conceivably, one might desire a textual representation
of a day of the week for display to the user.

He then goes on to explain why he thinks this to be
difficult with enumerations (I was not convinced).
However, when Cashman suggests on p. 38 of [7}:
There should be a string which is the identifier in
string form, associated with each enumeration
element. An intrinsic function could make the string
available as needed.

Lins retorts in [8]:
While perhaps of marginal use to a programmer,

exposing a programming identifier to an end-user as
part of an error message is clearly undesirable.

In many cases (§2), an enumeration exactly
models a problem-domain classification, and the
identifiers can be chosen so that even an end user can
relate to them. The days of the week are a prime exam-
ple. Certainly there are many situations in which out-
putting an enumeration identifier could only confuse
the user; but likewise most numeric variables in a pro-
gramme are such that there would be no use to print
out their values, and still nobody wants to prohibit the
output of integers in general.

Multilingual environments create additional
problems, but those are not insurmountable. It would
be possible to check at compile or link time that strings
corresponding to all enumeration constants have been
defined for all alternative user languages to be sup-
ported. Indeed such checking would appear much
easier implementable for enumerations than other
approaches.

40



There are needs for the input of enumerations as
well, although probably less often than output. Since
the input is far less trivial to program by hand in a
robust way than the output, it could be even more
beneficial to have as a built-in feature. I think some
Pascal implementations already have facilities for the
input and output of enumerations.

9. Conclusion

It is true that omitting enumerations from a pro-
gramming language makes the compiler writer’s job
easier. Therefore it may indirectly profit even program-
mers, because the compilers may be smaller, faster, and
less bug-ridden. However, I suppose enumerations are
not a particularly difficult feature to implement. Leav-
ing out integer types would bring far greater savings;
after all, everything can be done with just floating-point
numbers.

Lins (and Wirth) have tried to convince us that
dispensing with enumerations is a direct advantage
also to the users (programmers) of a language. They
should be first-rate experts; Lins has published books
about software components in Modula-2. However,
many of their arguments turned out to be evidence of
flaws in Modula-2, not in the general idea of
enumerated types. Although bashing Ada seems to be
fashionable, language designers might sometimes do
well to look for well-thought ideas and features in Ada.

Until much stronger arguments than we have
seen so far are presented, I agree with Cashman: one
can do without enumerations, but at the expense of
more work and less understandable, less maintainable
code. One aspect that Cashman did not take up expli-
citly but that I want to stress is that judicious use of
enumerations is an aid in the modelling of the applica-
tion domain.

Acknowledgements

When I had submitted the previous version of
this article and sent copies to some acquaintances, Kai
Kogkimies told me that at least the ETH implementa-
tion of Oberon is based on “name equivalence” between
types. When I asked on Usenet about type equivalence
and the restrictions on function return types, Thomas
Romke and Andreas Borchert pointed out that I had
missed the restriction (§4) that was clearly written in
§10.1 of [2]. Marc-Michael Brandis then confirmed (in
the ‘comp.lang.modula2’ group):

Oberon uses name equivalence as does Modula-2.
There are two special cases in which structural

equivalence is used: Open arrays and procedure
variables.

I would also like to thank the editor for his pati-
ence with revisions. The first version of this paper was
already patched once with replacement pages because
of some erroneous reference numbers.

41

References

These are in chronologic order. Since there are
any number of books on both Modula-2 and Ada, refer-
ences to them would be superfluous.

[1] Niklaus Wirth. “From Modula to Oberon”.
Software — Practice and Experience, 18:7 (July
1988), 661 — 670.

Niklaus Wirth. “The Programming Language
Oberon”. Software — Practice and Experience,
18:7 (July 1988), 671 — 690.

Ole Lehrmann Madsen, Birger Mgller-Pedersen.
“What object-oriented programming may be — and
what it does not have to be”. In: S. Gjessing, K.
Nygaard (Eds.). ECOOP ‘88 European Conference
on Object-Oriented Programming, 1 20.
Springer-Verlag 1988.

AJ.E. van Delft. “Comments on Oberon”. ACM
SIGPLAN Notices, 24:3 (March 1989), 23 - 30.

Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson. Modula-3
Report (revised). Digital Systems Research Center
and Olivetti Research Center, 1989.

C. Lins. “Programming Without Enumerations in
Oberon”. ACM SIGPLAN Notices, 25:7 (July
1990), 19 - 27.

Mark Cashman. “The Benefits Of Enumerated
Types in Modula-2”. ACM SIGPLAN Notices, 26:2
(February 1991), 35 — 39.

C. Lins. Author’s Response to [7]. ACM SIG-
PLAN Notices, 26:2 (February 1991), 40.

(2]

(3]

(4]

(5]

[6]

{7

(8]



